The Candy Problem

Problem: Daniel bought one pound of jellybeans and two pounds of chocolates for \$2.00. A week later, he bought four pounds of caramels and one pound of jellybeans, paying \$3.00. The next week, he bought three pounds of licorice, one pound of jellybeans and one pound of caramels for \$1.50. How much would he have to pay on his next trip to the candy store, if he bought one pound of each of the four candies?

Solution: Let,

J = the cost of one pound of JellybeansC = the cost of one pound of ChocolatesK = the cost of one pound of CaramelsL = the cost of one pound of Licorice

So we have,

J	+2C			=200
J		+4K		= 300
J		+K	+3L	=150
J	+C	+K	+L	=X

Where, X is the total cost of one pound of each candy.

Using Matrices, we can re-write the equation as follows:

Now, let's do row(3) - 3*row(4):

$$\begin{vmatrix} 1 & 2 & 0 & 0 & 200 \\ 1 & 0 & 4 & 0 & 300 \\ -2 & -3 & -2 & 0 & 150 - 3X \\ 1 & 1 & 1 & 1 & X \end{vmatrix}$$

Now, $row(3) + \frac{1}{2}row(2)$ gives us:

1	2	0	0	200
1	0	4	0	300
-1.5	-3	0	0	300 - 3X
1	1	1	1	Х

Next, $row(3) + \frac{3}{2}row(1)$ yields:

1	2	0	0	200
1	0	4	0	300
0	0	0	0	600 - 3X
1	1	1	1	X

Based on row (3), we have 600 - 3X = 0. Hence X = total cost of one pound of each candy = 200 or \$2.00.